١-۵ تهویه مطبوع (قسمت آخر این بخش)

بخش پنجم

١-۵ تهویه مطبوع

بهینه سازی مصرف سوخت در تهویه مطبوع

خانه ها و فضاهای کاری، با این که بزرگ ترین مصرف کنندگان انرژی در این کشور هستند، برنامه هایی مانند Energy Star و «راهبری در طراحی زیست محیطی و انرژی (LEED)»، کاهش مصرف انرژی را از جنبه های سبز و پایایی ساختمان مورد هدف قرار داده اند. ANSI/ASHRAE/IESNA Standard 90.1با نام «استاندارد انرژی برای ساختمان ها به استثنای ساختمان های کوچک مسکونی» و همچنین دستورالعمل های انرژی ایالتی، استانداردها و قواعد محرک این حرکت به شمار می آیند. افزایش هزینه های انرژی نیز، این حرکت را از نظر جنبه های اقتصادی آن تسریع می نماید. بنابراین انتظار می رود نتایج خوبی از این برنامه ها حاصل گردد. در طول پانزده سال گذشته، تقاضای برق مورد نیاز برای روشنایی فضاهای تجاری به نصف کاهش یافته است. استفاده از روشنایی روز، چراغ های کم نور شونده، حسگرهای حضور افراد و غیره، توانسته اند این کاهش قابل توجه را ایجاد نمایند. مصرف انرژی رایانه ها، نمایشگرها، دستگاه های کپی، فکس و دیگر لوازم اداری نیز کاهش چشم گیری یافته است. کاهشی چهل تا شصت درصدی نیز در میانگین بارهای سرمایش داخلی به چشم می خورد. به عنوان مثال، بازسازی یک ساختمان اداری با مساحت 10000 فوت مربع با سن ده سال با به کارگیری تجهیزات روشنایی و اداری جدید، می تواند 20 کیلووات از بار الکتریکی اوج و بیش از 5/5 تن بار تهویه مطبوع را کاهش دهد. مسلم است که این صرفه جویی های انرژی با گذشت زمان بیشتر مصرف انرژی را نیز به نام خود ثبت نمایند. اما عدم ارزیابی تاثیراتی که بر روی سیستم های تهویه مطبوع رخ خواهند داد، می تواند منجر به بروز مشکلاتی در زمینه ی آسایش ساکنین و کیفیت هوای داخلی ساختمان گردد. قواعد سرانگشتی که برای دهه های متمادی تقریبا ثابت باقی مانده بودند، به نظر می رسد که دیگر صحت گذشته را از دست داده اند. در واقع، آنچه که ممکن از نظر صرفه جویی در انرژی بسیار ایده آل به نظر برسد، شاید سیستم تهویهمطبوع ساختمان را تبدیل به دستگاه تولید شکایات ساکنین نموده و در برخی موارد، کابوسی واقعی در مورد کیفیت هوای داخلی به شمار تهویه مطبوع ساختمان را تبدیل به دستگاه تولید شکایات ساکنین نموده و در برخی موارد، کابوسی واقعی در مورد کیفیت هوای داخل آید.

تولید گرمای کمتر، سرمایش مورد نیاز پایین تر

در اوایل دهه ی 1990، فضاهای داخلی معمولی با استفاده از اختلاف دمای «تغذیه به فضا» ی معادل F20، برای بارهای اوج 0.8 تا 1.0cfm به ازای فوت مربع طراحی شده بودند. مقادیر هوای تغذیه برای بار ناشی از حضور افراد، با روشنایی و همچنین بار دستگاه های موجود، تا اواخر دهه ی 1990 یعنی زمانی که پیشرفت های قابل توجهی در زمینه ی روشنایی به وجود آمد و کاهشی 30 تا 40 درصدی را باعث گردید، تقریبا ثابت باقی ماند. فضاهای جدید و بازسازی شده با استفاده از سیستم های روشنایی پیشرفته و همچنین بار کاهش یافته ی نمایشگرهای LCD، می توانند در شرایط اوج سرمایشی بین 0.35 تا 0.4cfm به ازای هر فوت مربع کاهش ایجاد نمایند. اما در این مقدار پایین cfm به ازای فوت مربع، مشکل آغاز می گردد. برنامه ریزی در این زمینه کار ساده ای نیست، زیرا موارد صرفه جویی در انرژی روشنایی و تجهیزات رایانه ای، تنها با گذشت زمانی طولانی از مرحله تکمیل طراحی و ساخت امکان پذیر خواهد بود. اغلب دیفیوزها قادر نیستند 0.4cfm به ازای فوت مربع هوای تغذیه را به مقدار کافی برای پوشش دهی مناسب محل مورد نظر تامین نمایند. هوای کم سرعت به مقدار کافی در محیط پراکنده نشده و فقط در همان راستا به سمت پایین حرکت خواهد کرد. بنابراین افرادی که زیر دریچه های هوای تغذیه قرار می گیرند احساس سرما کرده و دیگران، هیچ حرکت هوایی در اطراف خود نداشته و بنابراین احساس گرما و کلافگی خواهند کرد. هوای سردتر از سمت سقف حرکت کرده و با هوای گرم مخلوط می شود. در ارتفاع 6 فوتی، دمای هوا F75 است. اثربخشی تهویه می تواند رفاه مناسب را در فضای مورد نظر حفظ نماید. شکل (3) عملکرد همان دیفیوزر را در 0.5cfm به ازای فوت مربع حرکت کرده و با هوای 0.35cfm در هر فوت مربع، شرایط بدتر می شود.

یک سیستم حجم هوای متغیر (VAV) می تواند به کمتر از 20.0cfm بر هر فوت مربع در بارهای کاهش یافته نیاز داشته باشد. تنها انواع معدودی از دیفیوزرهای القای بالا/ دمای پایین و دیفیوزرهای چند شبکه ای قابل تنظیم می توانند در این مقدار جریان هوا، شرایط مناسب را تامین نمایند و البته این نوع دیفیوزرها در بسیاری از ساختمان های اداری نصب نشده اند. در اختلاف دمای F20 و جریان هوای 0.35cfm در فوت مربع، یک دیفیوزر 150cfm بایستی 430 فوت مربع را پوشش دهد که حداقل 10 فوت فضای موثر پراکنش برای دیفیوزر چهار جهته مورد نیاز خواهد بود. در 75 درصد بار (112 cfm)، همان دیفیوزر نیاز به پراکنش بین 9 تا 10 فوت خواهد داشت. دریچه های خطی و برخی دریچه های القای بالا، جزو معدود ابزارهایی هستند که این الزامات را برآورده می سازند. اگر توزیع هو در نظر گرفته نشود، اولین نشانه ی بروز مشکل در ساختمان هایی که از انرژی پایینی استفاده می کنند، وجود شکایاتی در مورد سرد و گرم بودن یک محل خاص خواهد بود. مشکلات جدی تری نیز در نواحی گرم تر و دارای تابستان های مرطوب دیده می شود (دماهای حباب تر طراحی بالاتر از C76). با کاهش گرمای محسوس تا 50 درصد یا بیشتر، بار نهان تبدیل به بخش بزرگ تری از کل گرمای تولید شده در فضا خواهد شد. بارهای داخلی امروزی می توانند نسبت گرمای محسوس (SHR) بین 85 تا 90 درصد داشته باشند. کاهش تولید گرما در سیستم های روشنایی و تجهیزات موجود در محل می تواند این مقدار را به 65 تا 75 درصد کاهش دهد. نیمی از هوای تغذیه برای فضای معمولی امروزی، هنوز هم به مقدار مشابهی از هوای خارج نیاز دارد. مقدار 20 cfmهوای خارجی به ازای هر نفر و یک نفر به ازای 100 فوت مربع، معادل حداکثر 0.2 cfm به ازای فوت مربع هوای خارجی خواهد بود. در مقایسه با مقادیر 0.35 تا 0.4cfmبر فوت مربع که برای سرمایش فضا مورد نیاز است، درصد هوای خارجی از 25 تا 35 درصد به 50 درصد یا بیشتر افزایش می یابد. یک سیستم VAV با استفاده از معادله 1-6 از ANSI/ASHRAE Standard 60-2001با نام «تهویه برای کیفیت هوای داخلی قابل قبول»، اگر هر ناحیه ای در جریان کاهش یافته باشد. معمولا بین 80 تا 100 درصد هوای خارجی الزام می نماید. درصد بالاتر نسبت هوای خارجی، مقدار بار نهان بر روی کویل های خنک های کننده را افزایش داده و مقدار SHR را بیش از پیش کاهش خواهد داد. کویل های خنک کننده با شرایطی روبرو خواهند شد که در آن شرایط، نمی توانند رطوبت را از هوا بزدایند. یک کویل محاسبه شده برای 80 درصد SHR نخواهند توانست با افتSHR رطوبت هوا را بزداید (در بارهای سطحی خنثا، بار محسوس و SHRبیشتر افت می کنند). به خصوص کویل های آب سرد، بدون بار گرمای محسوس برای زدایش گرمای نهان، آسیب پذیرترند.

کویل خنک کننده که برای برای تطابق دقیق با بار موجود انتخاب شده است، دارای 11 درصد ظرفیت نهان اضافی است. در 1.8w به ازای فوت مربع، ظرفیت کویل 8 درصد کمتر از مقدار مورد نیاز برای برآورده ساختن نیاز بار نهان است. سطوح رطوبت نسبی بالای 60 درصد کاملا محتمل به نظر می رسد. در شرایط سردتر، می توان سطح بالای رطوبتی را انتظار داشت.

تمام مشکلات رطوبتی مربوط به میزان بالای رطوبت می تواند در این شرایط در ساختمان آغاز شده و گسترده شود. غیر از هوای خشک زمستانی، شرایط معدودی وجود دارد که می تواند هوای ساختمان را خشک نگه دارد. سیستم HVAC در این شرایط می تواند منشا بروز مشکلاتی از قبیل رشد قارچ و کپک ها و دیگر مشکلات کیفیت هوای داخلی گردد.

مستقل بودن عملکرد سیستم از مساحت زیربنای ساختمان:

با افـزایش مساحت زیربنـای ساختمـان، مصرف سوخت و انرژی آن نیز به نسبت ساختمانهای کوچکتر افزایش می یابد و موجب می شود تا اجرای روشهای بهینه سازی مصرف انرژی در ساختمانهای بزرگتر، پر هزینه تر شود. بعنوان مثال درصورتیکه مساحت پنجره های هر ساختمان 15% مساحت کل ساختمان در نظر گرفته شود در یک ساختمان با مساحت 000/10 متر مربع، مقدار و هزینه اجرای پنجره دو جداره 5 برابر مقدار و هزینه اجرای آن در یک ساختمان با مساحت 2000 متر مربع می باشد و به همین ترتیب برای اجرای   روشهای دیگری مانند : عایق حرارتی، عایق های حرارتی دیوار و کف و سقف، شیرهای ترموستاتیک رادیاتور.

برخلاف روشهای فوق، سیستم های کنترل هوشمند موتورخانه دارای ویژگی منحصربفرد و متمایز "مستقل بودن عملکرد از مساحت      بنای ساختمان" می باشند. به عبارت دیگر در موتورخانه هر ساختمان، صرف نظر از مساحت آن، تنها با نصب یک دستگاه با هزینه ای ثابت و حداقل، موتورخانه هوشمند می گردد. دلیل این ویژگی منحصربفرد در تعداد مشعلها و دیگهای هر موتورخانه است. تعداد و ظرفیت حرارتی مشعلها و دیگهای تاسیسات حرارتی هر ساختمان (مصرف کنندگان سوخت) با مساحت آن نسبت مستقیم دارد و همواره تعداد مشعلها و ترکیب ظرفیت حرارتی آنها به نحوی است که علاوه بر تامین بار حرارتی مورد نیاز ساختمان، موجب افزایش هزینه های اجرایی نیز نگردند. طبق تحقیقات انجام شده در سطح موتورخانه های کشور در بیش از 99% ساختمانهای موجود تعداد دیگها و مشعلها حداکثر 3 دستگاه می باشد. در ساختمانهای کوچک با مساحت زیر 2000 مترمربع، ظرفیت حرارتی مشعلها و دیگها پائین و در حدود kcal/h 150000 – 100000 می باشد و با افزایش مساحت ساختمان با ثابت ماندن تعداد دیگ و مشعل، ظرفیت حرارتی آنها افزایش می یابد و حتی به حدود kcal/h 1000000 و یا بیشتر نیز می رسد.

عملکرد هر خروجی مشعل یا پمپ در سیستم های کنترل هوشمند موتورخانه به شکلی است که بصورت سریال (سری) در مدار برق این تجهیزات قرار گرفته و صرف نظر از ظرفیت جریانی و آمپراژ آنها با فرمان ON/OFF در زمانهای مقتضی آنها را کنترل می نماید.

بنابراین با توجه به توضیحات فوق سیستم های کنترل هوشمند موتورخانه با قابلیت کنترل تا 3 مشعل دارای ویژگی منحصربفرد مستقل بودن عملکرد از مساحت بنای ساختمان می گردند.  

پیک زدایی مصرف سوخت در اوج سرما :

اوج مصرف گاز در فصل سرما از ساعت 17 تا ساعات اولیه بامداد می باشد. این محدوده زمانی مقارن با غروب خورشید و کاهش دمای هوا و نیاز به افزایش فرآیند گرمایشی ساختمان می باشد (افزایش درجه حرارت بخاریهای گاز سوز، افزایش درجه ترموستات دیگ در ساختمانهای دارای موتورخانه مرکزی و یا افزایش تعداد رادیاتورهای فعال در هر واحد ساختمانی). نکته قابل توجه دیگر، زمان پایان ساعت کاری ادارات، مجتمع های عمومی و تجاری و مدارس می باشد که دقیقاً همزمان با ساعت اوج مصرف گاز می باشد. این مهم در کنار قابلیت ویژه و منحصر بفرد سیستمهای کنترل هوشمند که توانایی خاموشی و یا اعمال دمای آماده باش مصرف موتورخانه ساختمانهای غیر مسکونی پس از پایان ساعت کاری را دارند مفهوم ویژه ای را پدید می آورد : پیک زدایی مصرف در اوج سرما

از مصرف گاز سالانه تاسیسات حرارتی هر ساختمان در حدود 20%  آن مربوط به فصل گرما (متوسط 7 ماه سال) و در حدود 80% آن مربوط به فصل سرما (متوسط 5 ماه یا 150 روز در سال) می باشد.

همچنین در بسیاری از ساختمان های اداری و مدارس، موتورخانه در تابستان خاموش و تنها در زمستان مورد بهره برداری قرار می گیرد. بنابراین در این دسته از ساختمانها عملاً 100% صرفه جویی حاصل از عملکرد سیستمهای کنترل هوشمند موتورخانه مربوط به فصل سرما خواهد بود. که طبیعتاً میزان اثر بخشی آن بر روی جبران پیک مصرف نیز بسیار محسوس و قابل تامل می باشد.

 درحدود 80% از حجم گاز صرفه جویی شده حاصل از عملکرد سیستمهای کنترل هوشمند موتورخانه در فصل سرما مربوط به خاموشی یا دمای آماده باش موتورخانه پس از پایان ساعت کاری ساختمانهای غیرمسکونی و از ساعت 17 تا ساعتهای اولیه بامداد می باشد که همزمان با ساعت اوج مصرف گاز است.

پیک های مصرف گاز در ساختمانهای غیرمسکونی و اداری طی دو نوبت یکی صبحها به هنگام شروع کار اداره و دیگری در هنگـام  ظهر و موقع نماز و ناهار و استفاده از آب گرم مصرفی می باشد که البته اثرات آن بر روی مصرف گاز شبکه ناچیـز می باشـد ولی با این وجود در صورت استفاده از سیستم های کنترل هوشمند موتورخانه با توجه به افزایش دمای هوا به هنگام ظهر و نیاز گرمایش کمتر  در این مقطع زمانی نیز پیک زدایی صورت می پذیرد.  

کنترل مستقیم و از مبداء تجهیزات حرارتی ساختمان :

با اجرای روشهای مختلف بهینه سازی در ساختمانهایی که دارای سیستم حرارت مرکزی می باشند، فرآیند صرفه جویی و کاهش مصرف سوخت نهایتاً منجربه تقلیل زمان کارکرد مشعل ها به دو صورت مستقیم و یا غیر مستقیم می گردد.

 در تمامی روشهای بهینه سازی مصرف سوخت، به استثناء سیستمهای کنترل هوشمند، کاهش زمان کارکرد مشعلها بصورت غیرمستقیم و با :

کاهش نرخ افت دمای آب گرم چرخشی، مانند استفاده از عایق های حرارتی در بدنه دیگها، منابع آب گرم مصرفی و سیستمهای لوله کشی گرمایش از کف، مشعل پربازده

کاهش حجم آب گرم چرخشی در ساختمان، مانند شیر ترموستاتیک رادیاتور

کاهش توام موارد فوق، مانند پنجره دوجداره، عایق کاری حرارتی سقف و کف دیوارها می باشد.

 در صورتیکه سیستم های کنترل هوشمند موتورخانه بطور مستقیم علاوه بر کنترل زمان روشنی-خاموشی مشعلها، پمپهای آب گرم چرخشی را نیز با منطقی هماهنگ و سازگار با برنامه کارکرد مشعل ها، متناسب با تغییرات دمای خارج ساختمان و شرایط مطلوب  دمای آب گرم مصرفی کنترل می نماید.

این ویژگی منحصربفرد (کنترل تجهیزات در مبداء) باعث می گردد تا دمای آب گرم چرخشی تنها به اندازه مورد نیاز و تا برقراری شروط مصارف گرمایشی افزایش یابد. در غیراینصورت همواره دمای آب گرم چرخشی در بالاترین حد خود بوده و با اجرای روشهای بهینه سازی در محل مصرف می بایست از اتلاف آن جلوگیری نمود. علاوه بر آن کنترل مستقیم پمپهای آب گرم چرخشی به میزان قابل ملاحظه ای در مصرف انرژی الکتریکی، صرفه جویی شده و هزینه های استهلاک و سرویس-نگهداری نیزبه شدت کاهش می یابند.

بهینه سازی مضاعف مصرف سوخت در ساعتهای تعطیلی ساختمانهای غیرمسکونی :

قابلیتهای کنترلی سیستم های هوشمند موتورخانه موجب صرفه جویی در مصرف سوخت به دو صورت زیر می گردند :

الف- کنترل مصارف گرمایشی در زمان کارکرد و بهره برداری از موتورخانه

ب- امکان خاموشی و یا آماده باش موتورخانه در دمایی ثابت و پائین پس از ساعت کاری در ساختمانهای غیرمسکونی

ساختمانها به لحاظ کاربری به دو دسته مسکونی و غیرمسکونی (اداری- آموزشی- عمومی- تجاری) تقسیم می شوند در ساختمانهای مسکونی از موتورخانه بصورت پیوسته و دائم به منظور تامین مصارف گرمایشی استفاده می شود و صرفه جویی ناشی از عملکرد سیستم های کنترل هوشمند موتورخانه در این دسته از ساختمانها صرفاً به لحاظ اعمال تغییرات دمای خارج ساختمان و کنترل دمای آب گرم مصرفی می باشد و صرفه جویی در ای

/ 2 نظر / 8 بازدید
عقاب

سلام. بله من بیشتر کار تاسیسات انجام یم دهم. پروژه داشتید در خدمتم

واقف کرمی

سلام دوست عزیز . ممنون از کامنتتون . امیدوارم موفق باشید . از پیام های گروپ یاهو هم ممنونم . امیدوارم موفق باشید .